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of first-degree relatives of the proband. They used this design to estimate that
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INTRODUCTION

Wacholder et al. [1998] proposed a design called the kin-cohort design to esti-
mate the probability of developing disease (penetrance) associated with an autoso-
mal dominant gene. In this design, volunteers (probands) agree to be genotyped and
one also determines the disease history (phenotype) of first-degree relatives of the
proband. This design was used by Struewing et al. [1997] to estimate that the chance
of developing breast cancer by age 70 in Ashkenazi Jewish women who carried mu-
tations of the genes BRCA1 or BRCA2 was 0.56, a figure that was lower than previ-
ously estimated from highly affected families. Gail et al. [1999a] used the term
genotyped-proband design, instead of kin-cohort design, to emphasize that the proband
was genotyped, and they stressed the importance of obtaining representative samples
of probands, conditional on their phenotypes, in order to obtain population-based
estimates of penetrance.

To estimate the disease survival distribution (one minus the cumulative inci-
dence function) for mutation carriers and non-carriers, Wacholder et al. [1998] used
the fact that the survival distribution for first-degree relatives of probands who car-
ried a mutation was a mixture of survival distributions for carriers and non-carriers,
with mixing proportions about 50:50 for rare mutations. Likewise, the survival dis-
tributions for first-degree relatives of non-carrier probands was approximately a 0:100
mixture of carrier and non-carrier distributions. The actual mixing proportions are
functions of the allele frequency q = P(A), where A is the mutant allele. Wacholder et
al. [1998] and Struewing et al. [1997] obtained Kaplan-Meier estimates of the sur-
vival distributions for first-degree relatives of carrier and non-carrier probands, re-
spectively, and then solved two linear equations that describe the mixing to estimate
the survival distributions for carriers and non-carriers. These estimates are consis-
tent, provided consistent estimates of q are available, but the estimates of survival
distributions are not necessarily monotone in small samples. Wacholder et al. [1998]
and Gail et al. [1999a,b] discuss the advantage of the kin-cohort design for estimates
of penetrance in comparison with other population-based designs, such as cohort-
and population-based case-control designs.

Gail et al. [1999a] showed how to obtain parametric maximum likelihood esti-
mates (mle’s) of q and of the survival distributions from kin-cohort data for carriers
and non-carriers for improper Weibull models that included a shape parameter, a
scale parameter, and a parameter describing the probability that disease will ever
develop. An advantage of this parametric approach is that it will yield monotonically
increasing estimates of the cumulative incidence. In this paper, we develop methods
for relaxing the parametric assumption by considering separate piecewise exponen-
tial models for carriers and non-carriers. As the number of intervals on which con-
stant hazards are assumed increases, these models become weakly parametric. The
maximum likelihood score equations become unstable and difficult to solve, how-
ever. We, therefore, have developed alternative pseudo-likelihood procedures that
are readily solvable for piecewise exponential models with many intervals and ex-
tend to a fully non-parametric estimator for the survival curves.

In this paper, we present notation and methods, and we evaluate the relative
efficiency of the pseudo-likelihood approaches, compared to maximum likelihood
for dichotomous outcomes and for time to response outcomes with hazards assumed
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to be piecewise constant in six intervals. We use exact calculation for dichotomous
outcomes and simulations for time-to-response data. We re-analyze a portion of the
data used by Struewing et al. [1997] using the non-parametric pseudo-likelihood
approach and conclude with a discussion.

NOTATION AND METHODS
General Methods

Let Y0 denote the phenotype of the proband and Y~1
T = (Y11, Y12, . . . ,Y1m) the

array of phenotypes of relatives. In this paper, we confine attention to first-degree
relatives, but many of the formulas apply more generally. For dichotomous outcomes,
Y0 = 1 or 0 according as the proband is diseased or not. For quantitative data, Y0 is a
measurement, such as blood pressure, and for survival data, Y0 = (T, d ) is a pair
describing the age, T, at end of follow-up and the disease status, d = 1 or 0 according
as the proband is diseased or not. Follow-up, T, ends at the earliest of the date of
disease onset or censoring. The components Y1j are defined similarly. In this study,
we concentrate on survival data but also consider dichotomous outcomes.

We assume an autosomal dominant disease model with mutant allele A and wild
type allele a. We assume Hardy-Weinberg equilibrium, under which a randomly se-
lected subject has genotypes AA, Aa, or aa with probabilities q2, 2q(1 – q), and (1 –
q)2, respectively, where, as before, q = P(A). Under an autosomal dominant model,
the probability of disease depends only on whether a subject is a mutation carrier
(AA or Aa) or a non-carrier (aa). Therefore, it is convenient to use the carrier fre-
quency p = P(AA or Aa) = 1 – (1 – q)2 instead of q in our calculations. Moreover,
one can characterize the proband’s genotype by g0 = 1 or 0 according as the proband
is a carrier or not, and the m × 1 genotype indicator for relatives, g

~ 1, has components
g1j that are defined similarly. Assuming Hardy-Weinberg equilibrium, one can use
standard Mendelian calculations [e.g., Li, 1976] to obtain the conditional mass func-
tion p(g

~ 1| g0;p). The assumption of Hardy-Weinberg equilibrium is needed to calcu-
late the probabilities of genotypes of pedigree founders. Gail et al. [1999a] describe
simple methods of enumeration to calculate p(g

~ 1| g0;p) for small pedigrees of the
type we consider in this paper. When we need to index the i’th family, i = 1,. . . .,I,
we use the notation y0i, y~1i, y1ij, g0i, g

~
1i, and g1ij.

We are principally interested in estimating the conditional densities (or mass
functions) of phenotype given genotype, namely f (y0|g0;w). For example, for dichoto-
mous data,  f(y0|g0 = 1;w0, w1) = w1

y0 (1 – w1) 
1–y0 and  f(y0|g0 = 0;w0, w1) = w0

y0 (1 – w0) 
1–y0.

Here w0 and w1 are penetrance parameters for non-carriers and carriers, respectively,
and w

~
  = (w0,w1). In the case of time to response data, f is the density of a survival

curve characterized by parameters w0 for non-carriers and w1 for carriers.
In order to write the likelihood for the kin-cohort design, we use the commonly

made assumption that the phenotypes of family members are conditionally indepen-
dent given their genotypes. Also, by assuming Hardy-Weinberg equilibrium, we are
ignoring the possibility that an individual’s phenotype influences the chance that that
person will transmit his or her genes. From the  kin-cohort sampling scheme, we can
write the likelihood for a given family as

0 0 0 1 1 0( | ; , ) ( | ; , ).f g y f y gϕ π ϕ π
% % %

(1)
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Here f0 is a conditional probability mass function for g0 and f1 is a conditional den-
sity or mass function for y

~ 1, the vector of the phenotypes of the relatives.
The first factor in (1) reflects the assumption that probands are selected at ran-

dom, conditional on their phenotypes. From Bayes’ theorem,
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The second factor in the likelihood (1) follows from the conditional indepen-
dence assumption because the conditional density of y

~
1 given g0 and y0 is

1

1 1 0 1 1 1 0
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The full likelihood is el = el1 · el0, where el1 and el0 are the product over families
of f1(y~1|g0;w

~
, p) and  f0(g0|y0;w

~
, p), respectively. In principle, the log-likelihood l can

be maximized over p and w
~ 
 and variances of p̂ and w

~ ̂
 determined from the observed

information matrix. In practice, it is often convenient to evaluate the observed infor-
mation matrix by numerical differentiation of the log-likelihood evaluated at the pa-
rameter estimates.

Because full maximum likelihood score equations can lead to unstable estimates
and failure of convergence for piecewise exponential survival models with many
parameters, we consider two pseudo-likelihood approaches instead. In the first ap-
proach, we solve the following estimating equations [Godambe, 1991], which we
refer to as pseudo-likelihood equations:

ϕ ϕ π
ϕ

∂
= =
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Solving these equations is equivalent to alternately maximizing l1 with respect to w
~

for fixed p and maximizing l0 with respect to p for fixed w
~ 
, and continuing until the

parameter estimates converge. Viewing l1 as a log-likelihood, we regard substitution
of p̂ as a pseudo-likelihood procedure [Gong and Samaniego, 1981]. Likewise, sub-
stituting ŵ0 and ŵ1 into l0 can be regarded as a pseudo-likelihood procedure, which
justifies our terminology. In the second pseudo-likelihood method, we consider a
modification of (3) using the marginal approach introduced by Chatterjee and
Wacholder [2001], which we shall refer to subsequently as CW. In the marginal ap-
proach, one ignores the relationships between the relatives of a proband, but uses the
relationships between each relative and his/her proband. Thus, if a proband has a
mother and a sister, the contribution of this family in (3) is obtained by treating this
family as two separate families, one consisting of the mother and the proband and
the other consisting of the sister and the proband. Details of the marginal approach



214 Moore et al.

are presented in CW. For the rest of this study, the two pseudo-likelihood estimators
will be referred to as PLE and MPLE (marginal PLE), respectively.

Using a standard Taylor series argument (see Appendix), it can be shown that
as the number of families goes to ∞, PLE estimates will be asymptotically nor-
mally distributed with a variance-covariance matrix which can be consistently es-
timates by B̂–1Ω̂ (B̂–1)′, where
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Variance calculation for MPLE is similar to that of PLE, except that one needs to replace
Ω̂22 by an empirical estimate of the variance-covariance matrix of U1w (see CW).

For fixed p, one can solve U1w = 0 for w
~ 

 using an EM algorithm. If g
~1 were

known, then standard algorithms could be used to maximize the “complete data”
likelihood L1 = P f (y

~1|g~1;w) over w
~ 

 (the “M-step”). The previous product is over
families, and f (y

~1|g~1;w~ 
) is the product over relatives of f (y1j | g1j;w~ 

). For the “E-
step,” we need the expected value of g

~1i given y
~1i and g0i [see McLachlan and Krishan,

1997 for EM calculations for a mixture distribution]. We first need to calculate the
joint conditional density for a particular family

g
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Then the conditional expectation of the j’th element of g
~1 is given by

1 1 0 1 1 0 1 1 1 0
:
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l

j j j m
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E g y g h g y g h u g u y g
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= = ∑ K K
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We iterate between the M- and E-steps to solve (4) for fixed p. To obtain the pseudo-
likelihood estimates (p̂ ,ŵ), we iterate between the EM algorithm for solving (4) and
a one-dimensional search of (5) for p for fixed w, as discussed earlier.

Dichotomous Outcomes

If the phenotypes Y0 and Y1 are dichotomous with y = 1 or 0 corresponding
to the presence or absence of disease, then f (y |g = 0) = w0

y (1 –w0)
1–y and f (y |g

= 1) = w1
y (1 –w1)

1–y.
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The M-step of the EM algorithm yields the estimates
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where ĝ1ij = E(g1ij |y~ 1i, g0i;p̂,ŵ) as calculated in the E-step (Equation 7).

Survival Outcomes

Let t1ij, i = 1,. . . ,I, j = 1,. . . ,m, denote the relatives’ ages at the earlier of a
disease event or censoring, and let d1ij be the corresponding indicator of the disease
event. We similarly define t0i, and d0i , i = 1,. . . ,I, for the probands. Thus, the pheno-
type y in Equation (1) corresponds to the pair (t,d). We model the disease hazard for
non-carriers and carriers as piecewise constant with a common set of cut-points v0 =
0, v1, v2,. . . ,vk. These cut-points define the intervals [v0, v1) , [v1, v2),. . . ,[vk,∞). Let
l1

g, l2
g,. . . ,lk

g be the corresponding hazards for carriers (g = 1) and non-carriers (g
= 0). In the parametric case, the number and location of the cut-points are pre-speci-
fied (see Performance on Simulated Weilbull Survival Data). Let Yi(t) be the indica-
tor function for whether or not individual i is at risk at age t. Then the probability
that the person will not have been observed to have the event at or before age t is

1
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where Vil = 
l

l

v

v 1−
∫ Yi(t)dt denotes the number of person years that individual i spends

in the l ’th interval. We assume any censoring is independent of genotype. Under
this assumption, one can replace f(y1j | g1j;w) in equation (3) by lg1j (t1j)

d1jSg1j(t1j).
Likewise we can replace f(y0 | g0;w) in equation (2) by lg0 (t0)

d0Sg0(t0), provided, in
addition, survival following disease onset is independent of carrier status [see Gail
et al., 1999b].

Define the following expressions for the l’th interval in terms of person-years
(PYl

1NC and PYl
1C) and deaths per interval (Dl

1NC and Dl
1C) for non-carriers (gij = 0)

and carriers (gij = 1), respectively:
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where V1ijl  = 
l

l

v

v 1−
∫ Y1ij(t)dt. Then the M-step is defined by the complete data maximum

likelihood estimates of the hazards (based only on the relatives), given by
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using ĝ1ij. For the E-step, we use the conditional expectations of the carrier status as
defined by Equation (7).

We may obtain weakly parametric hazard estimates by increasing the number of
age intervals. The properties of such estimates remain to be investigated, however,
as the number of intervals increases, with increasing sample size.

NUMERICAL RESULTS
Performance on Dichotomous Outcomes

We studied analytically the performance of the full pseudo-likelihood (PLE)
and maximum likelihood (MLE) methods with respect to bias, precision, efficiency,
computation time, and stability of the estimates. We considered the effect of varying
the proportion r of the probands with disease. We studied all control probands (r =
0), random sampling of probands from the population (r = 0.105 or r = 0.252, de-
pending on the allele frequency in the population), case-control sampling with equal
numbers of case and control probands (r = 0.5), and all case probands (r = 1). Each
proband had only two informative relatives for breast cancer, a sister and a mother.
The efficiencies and variances-per-family are presented in Table I for a rare mutant
allele (p = 0.0066) and for a more common mutant allele (p = 0.19). We used the
penetrance parameters w1 = 0.92 and w0 = 0.1 to correspond to the values of the
penetrance of mutations of an autosomal dominant gene for breast cancer [Claus et
al., 1991]. We evaluated the efficiency of PLE compared to MLE. The variances of
MLE and PLE were computed exactly. The results are plotted in Figure 1.

For p = 0.0066, the efficiency of PLE is especially poor (8%) for r = 0.03 and
increases as r tends to unity. This makes sense because for small r, few probands will be
carriers. Therefore, there will be very few families contributing to P(Y1,Y~ 2|g0 = 1) (rela-
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TABLE I. Variances Per Family of MLE and PLE Parameter Estimates for a Dictotomous Outcome, and Efficiencies
of PLE

Proportion
Carrier of probands

Sampling frequency who are cases MLE variance PLE variance (efficiency as %)

method (π) (ρ) ϕ̂1 ϕ̂0 π̂ ϕ̂1 ϕ̂0 π̂

100% controls 0.0066 0.000 39.052 0.087 0.2186 59.858 (65%) 0.116 (75%) 0.3773 (58%)
Population 0.0066 0.105 9.676 0.046 0.0066 71.415 (14%) 0.047 (98%) 0.0067 (98%)
Case-control 0.0066 0.500 8.912 0.046 0.0020 17.210 (52%) 0.046 (99%) 0.0024 (84%)
100% cases 0.0066 1.000 8.731 0.047 0.0014 8.744 (100%) 0.047 (100%) 0.0014 (100%)
100% controls 0.19 0.000 0.526 0.221 0.8752 0.548 (96%) 0.240 (92%) 0.9974 (88%)
Population 0.19 0.252 0.388 0.066 0.1972 1.558 (25%) 0.101 (66%) 0.2110 (94%)
Case-control 0.19 0.500 0.433 0.060 0.1728 1.314 (33%) 0.081 (74%) 0.2274 (76%)
100% cases 0.19 1.000 1.044 0.114 0.4337 1.091 (96%) 0.120 (95%) 0.4691 (92%)
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tives of carriers), and most families will contribute only to P(Y1,Y~ 2|g0 = 0) (relatives of
non-carriers). These latter families tell us very little about w1. While MLE can recapture
some of this information from P(g0| Y0 = 0), PLE cannot since PLE estimation of w1 is
based only on the information from the relatives. For a more common allele (p = 0.19),
the variances are one or two orders of magnitude smaller and more stable across the

Fig. 1. Plots of the variances-per-family of the PL and ML estimates of w1, w0, and p, and of their
efficiencies. The variances (per family) of the pseudo- and full-likelihood parameter estimates for the
dichotomous outcome model are the solid and dashed lines, respectively, and the values are plotted on
a log scale on the left vertical axes. The efficiences are the dotted lines, and the values are plotted on
the  right vertical axes. The proportion of mutation carriers in the population is denoted by p and the
proportion of probands who are cases by r. The three plots on the left are for a carrier frequency p =
0.0066, and the three on the right are for p = 0.19.
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range of r. The efficiency of PLE is usually higher for p = 0.19 as compared to a rare
allele (p = 0.0066), but otherwise follows a similar pattern.

For p = 0.0066, var(ŵ 0) is much smaller and much more stable than var(ŵ 1)
over the full range of r. This may be because the dominant contribution to estimat-
ing w0 is from P(Y1,Y~ 2|g0 = 0), and there are always many probands with g0 = 0, even
if all probands are cases. The efficiency of PLE is never worse than 75% with p =
0.0066. With p = 0.19, var(ŵ 0) increases slightly, compared to p = 0.0066, and the
efficiency of PLE is never worse than 66%.

For p = 0.0066, var(p̂ ) decreases as r approaches 1 for both MLE and PLE,
and  the efficiency of PLE is at least 85% for values of r above 0.105. For a more
common allele (p = 0.19), var(p̂ ) is higher than for p = 0.0066 for both PLE and
MLE, and the efficiency of PLE is greater than 76% for all values of r.

Performance on Simulated Weibull Survival Data

We assumed that the time to disease onset (“survival time”) for mutation carri-
ers followed a Weibull distribution with shape parameter 2.1334 and scale parameter
0.0130, whereas non-carriers followed a Weibull distribution with shape parameter
3.2893 and scale parameter 0.0078. The parameters of the Weibull distributions were
chosen to match the cumulative risk of breast cancer reported by Struewing et al.
[1997] at ages 50 and 70, namely 0.33 and 0.56, respectively, for carriers and 0.045
and 0.13, respectively, for non-carriers. We chose a carrier frequency of p = 0.0243
to match that estimated by Carroll et al. [2000] from the Washington Ashkenazi data
set. As for the dichotomous case, we assumed each proband provided data on a mother
and a sister. We fit separate models with piecewise-constant hazards on seven age
intervals, [0,30), [30,40), [40,50), [50,60), [60,70), [70,80), [80,¥), for mutation car-
riers and non-carriers. We refer to this as a six-interval model because we are only
interested in estimates to age 80. We used simulations to estimate the precision of
our estimated survival parameters, and we estimated the efficiencies of PLE and
MPLE as the ratio of sample variances of MLE to those of PLE and MPLE, respec-
tively, obtained form 100 independent simulations. In each simulation, we generated
data from 5,000 families. We assumed that probands were sampled at random from
the population with the proportion of families having carrier probands set to p =
0.0243 as discussed above. Based on this value of p, the trinomial distribution with
support of eight points (the proband, mother, and sister can each be a carrier or a
non-carrier) was produced. For each pedigree, we used this distribution to randomly
determine with which trinomial point the pedigree was associated. To determine the
proband’s age we generated a normal (m = 51.96, s = 14.12) random variable. Given
the proband’s age, the sister’s age was obtained by adding the proband’s age to a
random variable generated from a normal (m = –0.47, s = 6.433) distribution. Simi-
larly, the mother’s age was obtained by adding the proband’s age to a random vari-
able generated from a normal (m = 28.39, s = 5.34) distribution. The parameters of
these three distributions matched the means and standard deviations observed in the
Washington Ashkenazi data. A women was a case if her simulated age at breast can-
cer onset was less than or equal to her simulated age at the time of study. All of the
age information was finally rounded to the nearest year. All computations were car-
ried out using the Gauss System [Aptech Systems, 1999].

We found no evidence of bias with any of the methods, since the average hazard
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estimates from MLE, PLE, and MPLE agreed well with the Weibull average hazard in
each interval (Table II). The estimated efficiency of PLE for hazard estimation ranges
from 54 to 91%, and of MPLE from 51 to 89% (Table II). The survival and hazard
estimates for carriers are plotted in Figure 2 for MLE, PLE, and MPLE, and 95% confi-
dence intervals are also shown. As expected, the MLE confidence intervals are some-
what narrower than both of the pseudo-likelihood confidence intervals. Somewhat
surprisingly, the widths of the confidence intervals based on PLE and MPLE are similar.
Weibull data for non-carriers were also simulated. MLE, PLE, and MPLE produced un-
biased estimates of the average hazards for non-carriers.

Using 13 age intervals, [0,30), [30,35),. . . ,[30,35),. . . , [80,85),. . . , [85,∞), PLE
and MPLE yielded excellent agreement with the carrier survival distribution (data
not shown). We refer to this as a 12-interval model because we are studying results
up to age 85. We were unable to obtain MLE hazard estimates with this model be-
cause the constrained maximization algorithm, called CML in Gauss [Aptech Sys-
tems, 1999], failed to converge, even when we started the iterations at the PLE
estimates. This sophisticated maximization algorithm uses a Newton-Raphson ap-
proach with a sequence of step sizes. If no steps yield an increase in the objective
function, numerous random directions are explored to start a new Newton-Raphson
search. When we allowed each event time to define the upper limit of a hazard inter-
val (the “non-parametric” approach), both PLE and MPLE yielded survival estimates
that were close to the correct model (solid line in Fig. 3, top).

Both PLE and MLE require considerable computation, but MLE requires even
more calculation than PLE. MLE required 6–8 times longer to fit a six-interval model
than PLE. MLE failed to converge with the twelve-interval model, while PLE took
2,170 cpu seconds in a Pentium Pro 200 MHz computer. The non-parametric PLE
model required approximately 50,000 cpu seconds to fit one data set, and again MLE
failed to converge. Thus, PLE is stable computationally even for fully nonparametric
survival estimation, but the time required for convergence can be quite long. By
contrast, our algorithm for MLE converged for a six-interval model, but failed to
converge for large numbers of intervals. MPLE is much faster than PLE.

Re-Analysis of Data From the Washington Ashkenazi Study

We used the PLE and MPLE procedures on a subset of 1960 family sets from the
data used by Struewing et al. [1997]. This subset consisted of all family sets where one
relative was a mother and where there was at least one sister of the proband. For sets
where the proband had several sisters, one sister was selected at random, so that every
family set contained exactly two relatives. (The original data set consisted of 4,873 fam-
ily sets with up to seven first-degree relatives in a set.) For consistency with the paper by
Struewing et al., we presented cumulative distribution functions (CDF’s) instead of sur-
vival functions. We obtained three CDF estimates: one each for PLE and MPLE, and for
comparison, a CDF calculated using the methods described in Struewing et al. [1997]
and Wacholder et al. [1998] (Fig. 4). Note that the Wacholder-Struewing estimate is not
monotone, but nevertheless provides an estimated CDF that is in close agreement with
both of the pseudo-likelihood estimates. We used bootstrap re-sampling of families to
estimate standard deviations of the Wacholder-Struewing CDF estimates (1,000 boot-
strap samples) and of the pseudo-likelihood CDF estimates (155 bootstrap samples).
Pointwise 95% confidence intervals were taken as the point estimate ± 1.96 times the
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TABLE II. Comparison of MLE, PLE, and MPLE Piecewise-Constant Hazard Estimates With the Corresponding Average Weibull
Hazard for Mutation Carriers*

Weibull
Average survival MLE PLE MPLE

Age Weibull probability Estimated Estimated Estimated Estimated Estimated EstimatedEfficiency (%)

interval hazard in at end of hazard survival hazard survival hazard survival PLE MPLE
(years) intervala interval (s.e.)b (s.e.)b (s.e.)b (s.e.)b (s.e.)b (s.e.)b hazardc hazardc

0–30 0.00449 0.8740 0.00433 0.8783 0.00410 0.8846 0.00407 0.8855 65 64
(0.00079) (0.0208) (0.00098) (0.0259) (0.00099) (0.0261)

31–40 0.01141 0.7797 0.01165 0.7821 0.01189 0.7860 0.01184 0.7871 55 51
(0.00256) (0.0296) (0.00345) (0.0352) (0.00358) (0.0360)

41–50 0.01517 0.6700 0.01539 0.6710 0.01534 0.6752 0.01516 0.6772 54 55
(0.00375) (0.0367) (0.00509) (0.0468) (0.00505) (0.0464)

51–60 0.01904 0.5538 0.01884 0.5567 0.01847 0.5630 0.01818 0.5663 57 59
(0.00556) (0.0434) (0.00736) (0.0585) (0.00726) (0.0584)

61–70 0.02301 0.4400 0.02293 0.4442 0.02182 0.4546 0.02183 0.4576 91 86
(0.00918) (0.0508) (0.00964) (0.0636) (0.00989) (0.0664)

71–80 0.02706 0.3357 0.02734 0.3435 0.02560 0.3587 0.02577 0.3605 91 89
(0.01701) (0.0701) (0.01778) (0.0838) (0.01802) (0.0852)

*The Weibull models for carriers and non-carriers are described in Performance on Simulated Weibull Survival Data. The population
mutation carrier frequency was π = 0.0243. The averqge ML estimate of π was 0.0244 with standard error 0.00212, the average PL estimate
of π was 0.0245 with standard error 0.00212, and the average marginal estimate of π was 0.0245 with standard error 0.00212.
aThe average hazard is the integrated hazard divided by the interval width.
bStandard errors of the mean hazard rates were estimated empirically from the 100 simulations.
cEfficiency is estimated as the squared ratio of standard errors of MLE to PLE and MPLE.
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Fig. 2. Average survival and hazard estimates for mutation carriers for the six-interval constant haz-
ard model. Data were generated from Weibull models for mutation carriers (see Performance on Simu-
lated Weibull Survival Data) with carrier frequency p = 0.0243. There were 100 independent simulations,
each based on 5,000 families. In these figures, the Weibull survival and hazard functions are plotted in
solid black, and the means of the 100 PL, MPL, and ML survival and hazard estimates and 95%
empirical confidence intervals are plotted in solid gray, dotted black, and dashed gray, respectively.
Top: Only the Weibull survival distribution is shown; the PL, MPL, and ML survival estimates are not
shown since they are indistinguishable from the Weibull at this plot resolution. Bottom: All three
hazard estimates are shown. The mean MLE, PLE, and MPLE estimates of p are 0.0244, 0.0245, and
0.0245, respectively.
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Fig. 3. Average survival and hazard estimates vs. age from the nonparametric PLE and MPLE mod-
els for carriers of mutations, from a simulation of Weibull data with a carrier frequency of 0.023. The
data for each simulation were generated from a Weibull distribution as described in Performance on
Simulated Weibull Survival Data. There were 5,000 family sets and 50 independent simulations. Top:
Weibull survival distribution is solid black, the PL estimate is solid gray, and the MPL estimate is
dotted black. Bottom: Solid black line is the Weibull hazard, and the PL and MPL hazard estimates are
indicated by the same line types as at the top. The estimates and standard errors of the carrier fre-
quency are p̂ PLE  = 0.0230 ± 0.0022 and p̂ MPLE = 0.0229 ± 0.0021.

estimated standard deviation (Fig. 4). The PLE and MPLE confidence intervals are both
narrower than those of the Wacholder-Struewing procedure. The improved precision of
PLE and MPLE may reflect the fact that PLE and MPLE implicitly impose monotonicity
constraints on the cumulative risk.
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DISCUSSION

We have used three approaches to obtain monotone estimates of cumulative
risk (or survival) functions for carriers and non-carriers of an autosomal dominant
disease gene from a kin-cohort design. The likelihood factors as (1) the probability
of the genotype of the proband given the proband’s phenotype and (2) the probabil-
ity of the relatives’ phenotypes, given the genotype of the proband. Maximum likeli-
hood estimation of the carrier frequency and the survival curves based on
Newton-Raphson procedures works for models with a modest number of param-
eters, as discussed by Gail et al. [1999b], but becomes numerically unstable and very
time-consuming as the number of parameters increases. A second procedure, PLE,
maximizes the two components of the likelihood separately, using the first part to
estimate the carrier frequency and the latter part to estimate cumulative risk func-
tions. PLE is computationally stable but time-consuming, and it can be considerably
less efficient than MLE for some values of the parameters (Tables I and II, Fig. 1).
Because of its greater efficiency, we recommend MLE whenever it can be computed.
However, further work is needed to define a reliable algorithm to compute MLE for
nonparametric or weakly-parametric survival estimates. A third procedure, MPLE, origi-
nally proposed by CW, treats the second factor in the likelihood as if each relative-
proband pair came from an independent family. This procedure is very fast, because
there is no need to sum over combinations of genotypes involving more than two
family members. MPLE is only slightly less efficient than PLE, and MPLE has the

Fig. 4. This graph represents the Wacholder-Struewing estimate (solid black), the non-parametric
PLE estimate (solid gray), and the non-parametric MPLE estimate (dotted) of the cumulative distribu-
tion functions and pointwise 95% confidence intervals at 10-year intervals. The top lines are for muta-
tion carriers. Note the non-monotonicity of the Wacholder-Struewing estimates. The bottom lines are
for non-carriers, which are virtually superimposable. The Wacholder-Struewing estimate of the carrier
frequency is p̂ ws = 0.0228, the PLE estimate is p̂ PLE = 0.0213, and the MPLE estimate is p̂ MPLE =
0.0227. The confidence intervals for the Wacholder-Struewing estimates are based on bootstrap samples
of size 1,000, while those for the pseudo-likelihood and marginal estimates are based on bootstrap
samples of size 155.
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additional advantage that it is more robust to failure of the assumptions of conditional
independence of family phenotypes given genotypes than are MLE or PLE (see CW).
In particular, if probands are selected at random from the general population, MPLE
yields valid estimates of the marginal cumulative risk functions even if there are sources
of familial aggregation unrelated to the gene under study.

MLE, PLE, and MPLE all yield more precise estimates of cumulative risk than
the procedure used in Struewing et al. [1997], probably because the implicit monoto-
nicity constraints reduce random variability of the estimates.

Several additional issues may be important in particular applications. First, we
have assumed that our sample of probands is representative, conditional on pheno-
type. Biases can result if the willingness of a potential proband to participate de-
pends on the phenotypes of his or her relatives [Struewing et al., 1997; Wacholder et
al., 1998; Gail et al., 1999b]. Second, there may be a need to introduce covariates
that modify cumulative risks. Third, a proband is available for study only if he or she
survives competing causes of mortality to the date of study, and the likelihood could
be affected if survival probabilities differ between gene carriers and non-carriers
[Gail et al., 1999a]. These biases can be minimized only through careful attention to
the methods used for sampling probands in kin-cohort studies.

A computer program in GAUSS is available from David Pee or Dirk Moore.
This program carries out the required calculations for a pedigree consisting of a
proband, her sister, and her mother. This program would require non-trivial modifi-
cations by the user for more general applications.
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APPENDIX

To compute the variance of U0, consider a family with given y0. Because
f0(g0|y0;p,w) is a conditional density and the support of g0 is independent of p, stan-
dard arguments show

E f0ln 0
π
∂  =  ∂

and

E f E f
2 2

0 02ln ln ,
π π

 ∂ ∂  = −    ∂ ∂ 

where the expectation is over g0 given y0. Because
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E(U0p) = 0. The variance of U0p, conditional on the observed set {y01, y02, . . . ,y0I}, is
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where the expectations in the summand are over g0i given y0i. Thus, the “observed”
variance of U0p, analogous to the observed Fisher information, is simply

l2
0
2 ,

π
∂−
∂

which can be obtained by numerical differentiation of f0. This quantity approximates
the unconditional variance of U0p in repeated samples of families.

To compute the variance of U1w, consider a family with given g0. Because the
conditional density f1(y~1|g0;p,w) has support independent of w

~
, the previous argu-

ment shows that
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E(U1w) = 0. The conditional variance of U1w given the set of values of g0 is
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where the expectations are over y
~1i given g0i. As before, the “observed” variance of

U1w, which approximates its unconditional variance, is
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To show that cov(U0p, U1w) = 0, consider the covariance between
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for family i. Conditional on y0i, E(U0pi) = 0, and conditional g0i|y0i on E(U0wi) = 0. There-
fore
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because U0pi is constant, given g0i and y0i.

π

ϕ

π π

ϕ ϕ

π ϕ

π ϕ

 
Ω =   

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
  ∂ ∂ 

0

1

0 0

1 1

var 0
Letting , and

0 var

,

U
  

U

U U

B
U U

we use a Taylor series expansion to estimate
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Estimates of B may be obtained by numerical differentiation at the pseudo-likeli-
hood estimate (p̂ ,ŵ

~
); the “observed” estimate of Ω is also obtained by numerical

differentiation at (p̂ ,ŵ
~
).
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